Research in Engineering and Aviation

researchheader695x135

Students at Saint Louis University’s Parks College have the opportunity to apply their education in a global context. We design our research projects to help students find ways to be technically brilliant, socially responsible, enterprising and ultimately to make our world better. Students can participate in research in a number of ways, through coursework, informal lab assistance, the CURE program, as graduate research assistants, and through thesis or dissertation work. You can view more about the research our students are involved in by visiting our Student Research page. 

Parks’ research focuses on the areas of research listed below. These areas of research address global challenges of the 21st century. Our research areas cross traditional disciplines, allowing students to work with internal and external faculty. Each research area lists the faculty active in that area. Learn about their contribution to the field by viewing their faculty bio page. Both undergraduate and graduate students collaborate with faculty, publish their results and present at professional conferences. When you graduate with a degree from Parks College, you are armed with more than technical knowledge. Our graduates are equipped to work with others in a professional, yet collaborative, setting and realize the results of their work.



Areas of Research

 Aviation Safety

 Hydrodynamics and Environmental Fluid Mechanics

 Biomaterials

 Innovation and Entrepreneurship

 Biomechanics

 Space Systems

 Cardiovascular and Assist Devices

 Structures and Bridges

 Engineering Education

 Tissue Engineering & Regenerative Medicine

 Engineering Mechanics & Materials

 Transportation

 Haptic and Human-Machine Interfaces

 Unmanned Aerial Systems & Flight Control Systems

 Human Factors & Physiology

 Water Quality and Treatment


 

Aviation Safety

Safety is a process by which hazards are identified and their associated risks are understood. Good safety refers to the minimization of hazards or the comprehensive mitigation of risks.  Perfect safety is improbable/impossible as all activities involve a degree of risk. Consequently, organizations that are generally considered safe work proactively to seek out hazards and reduce their probability of operationalizing into an incident or accident.

Faculty: Terrence Kelly, Manoj Patankar

Biomaterials

A biomaterial is any substance that has been engineered to interact with biological systems in a medical application, either therapeutic or diagnostic. The field of biomaterials is multidisciplinary encompassing elements of medicine, biology, chemistry, tissue engineering and materials science. Our biomaterials research is multifaceted, including designing and synthesizing novel biomaterials, designing technologies for biomaterials fabrication, biomaterials characterization, and specific applications. 

Faculty: Gary Bledsoe, Koyal Garg, Scott Sell, Silviya Zustiak

Biomechanics

Biomechanics is the study of force, motion, and strength (mechanics) applied to biological cells, tissues, organs and systems.  Understanding how mechanics are applied to and affect living systems is the purview of biomechanics.  From the study of how sports injuries occur and how bones break to that of cardiac muscle cell responses to force, all represent important biomechanics questions.  

Faculty: Gary Bledsoe, Natasha Case, Michelle Sabick

Cardiovascular and Assist Devices

The most advanced cardiovascular flow emulator in the world is used to model healthy and diseased conditions in the human cardiovascular system, including the effects on the four chambers of the heart, coronary, cerebral, renal and peripheral perfusion. The effect of various prosthetic and assist devices is modelled experimentally and numerically. Current developments are in the definition of non-dimensional fluid mechanic hemocompatibility parameters.

Faculty: Theodosios Alexander, Andrew Hall, Mark McQuilling

Engineering Education

Engineering Education is an interdisciplinary field that includes collaborations between experts in engineering, education, and psychology.  Research in engineering education goes beyond improvements to engineering teaching by focusing on how people learn engineering and how to measure learning.  Such research is well guided with specific research questions and hypotheses and ranges from engineering in K-12 to various topics related to undergraduate and graduate education and even industry applications.  The current focus of Parks College is K-12 engineering education, which includes improving STEM pathways, math and science readiness, and engineering self-efficacy, along with the effects of experiential learning, service learning, and collaborative learning on student retention and success at the college level.

Faculty: Chris Carroll, Jenna Gorlewicz, Habib Rahman, Michelle Sabick

Engineering Mechanics & Materials

SLU researchers in this research area investigate the interdisciplinary structural applications/processes that cut across traditional engineering boundaries. Examples include applications involving advanced manufacturing processes, machinability of newly developed engineering materials, multi-scale modeling and simulation of newly developed engineering materials, human skeletal systems, automotive components, flight vehicle structures, civil engineering structures, and other non-traditional structural systems. Graduate students will receive rigorous coursework that prepare them to tackle challenging research problems. Regular and fundamental courses include finite elements, advanced mechanics of solids, theory of elasticity, theory of plasticity, fracture mechanics, mechanics of composite materials, experimental mechanics, structural mechanics and dynamics, bio-mechanics, advanced engineering mathematics and scientific computations.

Faculty: Chris Carroll, Riyadh Hindi, Chi Hou Lei, Jeff Ma, Michelle Sabick

Haptic and Human-Machine Interfaces

SLU researchers in this area seek to promote effective human-machine interaction, particularly in education, medicine, and consumer technologies. We are creating and building the next generation of interfaces that will convey information multimodally and effectively to enable humans and novel technologies to work seamlessly and efficiently together. We are particularly interested in the role of haptics (touch feedback) in enhancing these new interactions and promoting new levels of information transfer that currently aren’t possible. Examples of projects in this area of research include designing next generation surface haptic touchscreens; automatic, multimodal evaluation of neurologic function; and creating multimodal learning experiences in STEM for students with blindness and low vision.

Faculty: Yan Gai, Jenna Gorlewicz

Human Factors & Physiology

Human Factors is the study of the interface in complex systems between the human and all other constituents. Influenced by human and system capabilities and associated limitations, human factors’ research at Parks College examines how the boundaries between humans and systems are simplified for ease of use and improved reliability. While maintaining the elements of more-traditional human physiology human factors, researchers at Parks College focus on the interface of the human in the context of organizational relationships and both their subtle and overt influence on safety culture.

Faculty: Stephen Belt, Terrence Kelly, Manoj Patankar

Hydrodynamics and Environmental Fluid Mechanics

SLU hydrodynamics research solves complex problems associated with environmental fluid mechanics and many aspects of open-channel hydraulics for natural and engineered systems.  Research areas include River Engineering, Hydraulic Structures, Sediment Transport, Urban Drainage, and Stormwater Erosion.  These research efforts also help understand how hydrodynamic processes affect water quality and ecosystems. Physical and numerical hydraulic modeling is the primary research methods and researchers incorporate several state-of-the-art technologies such as computation fluid dynamics (CFD), particle image velocimetry (PIV), remote sensing, and acoustic Doppler current profiling (ADCP) techniques. 

Faculty: Craig Adams, Amanda Cox

Innovation and Entrepreneurship

To be an entrepreneur, students must possess four major aspects: technical competency, an understanding of customer needs, a sense of business and societal values. At Parks, we are not only creating curricular innovations to encourage our students to become entrepreneurs, but we are researching exciting facets of engineering entrepreneurship and entrepreneurship education. We are educating engineers to have the entrepreneurial spirit coupled with a strong business sense, forming future leaders with the technical and business knowledge to make an impact on the world.

Faculty: Sridhar Condoor, Jenna Gorlewicz, Andrew Hall, K. Ravindra

Space Systems

Modern electronics and modern delivery systems have enabled the use of very small spacecraft to achieve important science, exploration and technology demonstration missions. At Parks, space systems research focuses on three areas: understanding the specific factors that lead to mission success (or failure) of these small spacecraft, development of new, small spacecraft components, and flight experiments in spacecraft proximity operations and autonomy.

Faculty: Sanjay Jayaram, Michael Swartwout

Structures and Bridges

This research area includes sophisticated analytical behavior and modeling of infrastructures such as buildings and bridges under static, cyclic and extreme loading.  It also includes damage modeling and experimental testing under cyclic and static loading, confinement of reinforced concrete elements, low-cycle fatigue, and behavior of bridges under vehicular live load. Our research team has extensive experience with bridge and structural monitoring and field instrumentation. The focus is to conduct meaningful and applied research that leads to successful implementation to state and federal agencies standards. 

Faculty: Chris Carroll, Riyadh Hindi

Tissue Engineering & Regenerative Medicine

Tissue engineering and regenerative medicine are rapidly growing, interdisciplinary fields that apply the principles and innovations of engineering and the life sciences to the development and restoration of tissues and organs. While similar, the two fields are often separated by their unique approaches. Tissue engineering is often identified by its aim to create tissue equivalents through a combination of tissue templates/scaffolds, mammalian cells, and signaling systems. Regenerative medicine often utilizes the body’s own reparative capacity, enhanced through the application and manipulation of stem cells and growth factors, coupled with advanced rehabilitative technologies to restore tissue function. Typical targets for tissue engineering and regenerative medicine include skin, bone, muscle, cartilage, nerve, and other organs that necessitate repair and replacement.

Faculty: Gary Bledsoe, Natasha Case, Koyal Garg, Scott Sell, Silviya Zustiak

Transportation

The transportation engineering research program focuses on improving the safety and mobility of the surface transportation system for all road users and modes of transportation. Statistical analysis, computer simulation, and predictive modeling are used to improve the design and operation of transportation facilities. The goal of this program is to contribute to transportation agencies’ efforts to provide a resilient, reliable, accessible, and equitable transportation system.

Faculty: Jalil Kianfar

Unmanned Aerial Systems & Flight Control Systems

Research on Flight Control System for UAS focuses on the development of resource aware fault tolerant algorithms and their evaluation through flight testing on UAS. The goal of this program is to ensure safe flight of Aerial Systems, under various abnormal flight conditions.

Faculty: Stephen Belt, Srikanth Gururajan, Sanjay Jayaram, Ray LeBeau, Kyle Mitchell

Water Quality and Treatment

SLU environmental engineering research focuses developing sustainable solutions to water quality and treatment issues facing the region and nation. The research approach used within this area is to use fundamental principles and methods including kinetic modeling, to solve highly applied environmental engineering problems. Research often addresses the analysis, occurrence and treatment of emerging contaminants such as cyanotoxins, pharmaceuticals, disinfection byproducts and related compounds. The Water Quality and Treatment Laboratory is used to conduct research on oxidation (e.g., chlorine, ozone and permanganate) and sorption (e.g., powdered activated carbon, activated alumina) processes. Applications focus on drinking water sources and treatment, but also include salt water aquaria and wastewater treatment processes. A major focus of this research thrust is the development, testing and implementation of point of use treatment technologies for use in developing nations.

Faculty: Craig Adams, Amanda Cox