Research in Engineering and Aviation

Oxidation investigation of nickel nanoparticles

June 2008

Author(s): Song, P., Wen, D., Guo, Z. X., & Korakianitis, T.

Journal: Physical Chemistry Chemical Physics, 10(33), pp. 5057-5065. DOI: 10.1039/b800672e


This work reported an experimental investigation of complete oxidation of nickel nanoparticles using simultaneous thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Nickel nanoparticles and their elemental compositions were characterized by Brunauer–Emmett–Teller (BET) analysis, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The oxidation experiments were performed under isoconversion conditions for seven heating rates, varying from 2 to 20 K min−1, with temperatures up to 1000 °C. The experiments revealed unique oxidation behaviour of nickel at the nanometre scale, such as early oxidation and melting phenomena, variable activation energies and different oxidation kinetics between low and high conversion ratios. Unlike its bulk counterpart where the activation energy is a constant, the activation energy of nickel nanoparticles depended on the conversion ratio, ranging between 1.4 and 1.8 eV. The oxidation kinetics of nickel nanoparticles changed from the classical diffusion controlled mechanism to a pseudo-homogeneous reaction as conversion ratios were over 50%. The oxidation mechanisms of nickel nanoparticles were further discussed and future studies to enhance understanding were identified.

Request Publication from Author